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In this paper the physical aspects of the statistical theory of the energy levels 
of complex physical systems and their relation to the mathematical theory 
of random matrices are discussed. After a preliminary introduction we 
summarize the symmetry properties of physical systems. Different kinds of 
ensembles are then discussed. This includes the Gaussian, orthogonal, and 
unitary ensembles. The problem of eigenvalue-eigenvector distributions of 
the Gaussian ensemble is then discussed, followed by a discussion on the 
distribution of the widths. In the appendices we discuss the symplectic 
group and quaternions, and the Gaussian ensemble in detail. 

KEY W O R D S  : Random matrices; eigenvalues; multivariate analysis; dis- 
tributions; energy levels; nuclear physics; statistical theory; ensembles. 

1. I N T R O D U C T I O N  

W i t h i n  the  t h e o r y  o f  q u a n t u m  m e c h a n i c s  ~1~ the  b e h a v i o r  o f  a phys ica l  sys tem 

is d e t e r m i n e d  by a s ta te  func t i on  ~F. T h e  s ta te  f u n c t i o n  is a so lu t ion  o f  the  

f ami l i a r  S c h r 6 d i n g e r  e q u a t i o n ,  

H W  = E W  (1) 
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where H is the Hamiltonian operator, a Hermitian operator, and E is a 
constant which denotes the energy levels of the system. Thus the energy 
levels are characteristic values (eigenvalues, or roots) of Hermitian operators. 
The stationary states of the system are the corresponding characteristic 
vectors (or eigenfunctions). 

Although theoretical analyses have had impressive success (2,3~ in inter- 
preting the detailed structure of the low-lying excited states of complex sys- 
tems, 2 still, there must come a point beyond which such analyses of individual 
levels cannot usefully go. (4~ For example, observations of levels of heavy 
nuclei in the neutron-capture region (5~ give exact information on the energy 
levels from number N to number N + n, where n is an integer of the order of 
100 whereas N is an integer of the order of  one million. It appears imProbable 
that energy level assignments, based on various models, can ever be pushed 
as far as the millionth level. 

One is then led to ask whether the highly excited states may be under- 
stood from the opposite point of view, by assuming no structure for the 
system and that no quantum numbers other than spin and parity remain 
good. Such an inquiry leads to a statistical theory of  energy levels. 

Such a statistical theory is not supposed to predict the detailed sequence 
of energy levels in any one nucleus or atom, but is expected to describe the 
general appearance and the degree of irregularity of the level structure that 
is to occur in a complex system which is otherwise too complicated to be 
understood in detail. 

As Dyson has pointed out, (4) in ordinary statistical mechanics a com- 
parable renunciation of exact knowledge about the system is also made. 
By assuming that all states of a very large ensemble are equally probable, 
one obtains useful information about the overall behavior of a complex 
system when the observation of the state of the system in all its detail is 
impossible. This standard type of statistical mechanics is clearly inadequate 
for the discussion of energy levels. What one wishes is to make statements on 
the fine detail of the energy level structure, and such statements cannot be 
made in terms of an ensemble of states. What is required is a different kind of 
statistical mechanics in which one renounces exact knowledge not of the 
state of a system but of the nature of the system itself. One might picture a 
complex nucleus as a "black box" in which a large number of particles are 
interacting according to unknown laws. The problem then is to define in a 
mathematically precise way an ensemble of systems in which all possible laws 
of interaction are equally probable. The idea of a statistical mechanics of 
nuclei based on an ensemble of systems is due to Wigner. 

2 The word system is used for a physical quantum system that can be described by the 
Schrbdinger equation. A system could be, for example, a complex nucleus, as is dis- 
cussed in Refs. 2 and 3, or an atomic system. 
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The difference between the usual statistical mechanics and the statistical 
theory of energy levels can also be seen, according to Wigner, as follows. ~ 
A system in quantum mechanics can be characterized by the Hamiltonian H, 
which is a self-adjoint linear operator in the infinite-dimension Hilbert space 
of functions ~F. I f  one introduces a coordinate system in the Hilbert space, the 
Hamiltonian operator may then be looked at as a Hermitian matrix of  
infinitely many dimensions. Therefore, an ensemble of  systems can be con- 
sidered as an ensemble of  Hermitian matrices. At this stage one might con- 
sider matrices of  very high dimensionality rather than infinite matrices. 
However, the question arises as to what ensemble of such matrices one has 
to consider. Herein lies the difference between the ensembles of  statistical 
mechanics and the ensemble of  the statistical theory of energy levels. 

In statistical mechanics one considers a system of particles with definite 
masses interacting among themselves by a given law. The state of such a 
system can be specified, in classical mechanics, by the generalized coordinates 
q~ and the generalized momenta  p~ of the particles, where both q~ and p~ are 
functions of time. The physical quantities one is then interested in are the 
time averages of  continuous functions f of  the coordinates and momenta,  

~ t + T  

l imr~ ~ ( l /T)  j f(q~(-r), q2(-r),..., pl(r), p2('r),...) dr 
t 

(2) 

Using Newton's law of motion, one can, in principle, determine the coor- 
dinates and momenta  as functions of  time and their initial values (see, e.g., 
Ref. 7). Hence the averaging process is an entirely definite one, and the result 
is a function only of the constants of  motion, such as energy, but independent 
of  other initial conditions. This result, except for rare cases, has long been 
proved and known by yon Neumann and others5 8-12~ 

The averaging process in the theory of random processes, on the other 
hand, is not defined. One again deals with a specific system with its proper, 
though in many cases unknown, Hamiltonian and pretends that one deals 
with a multitude of systems, all with their own Hamiltonians, and averages 
over the properties of  these systems. Such a procedure can be meaningful 
only if it turns out that the properties in which one is interested are the same 
for the vast majority of  the admissible Hamiltonians. What  are the admissible 
Hamiltonians, and what is the proper measure in the ensemble of  these 
Hamiltonians ? And suppose the ensemble of  admissible Hamiltonians with 
a proper measure is given. Are the properties in which we are interested 
common for the vast majority of  them? 

Figures 1-3 illustrate the situation which leads to the idea of the statis- 
tical properties of  the spectrum in the higher-energy region, as compared to 
low-energy region, where one desires to have a rather complete description 
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of the stationary states and as complete a listing as possible of the exact 
values of the energy levels. 

Figure 1 gives the energy levels of the nuclei beryllium, boron, and 
carbon (Be 1~ B 1~ and C1~ The diagram shows the eight lowest energy 
levels of B ~~ and the lowest two energy levels of Be ~~ and C z~ It gives the 
position of these energy levels, their total angular momenta J, and parities 
T ( Z 3 )  

Of much interest, but not shown in the diagram, are the transition 
probabilities between these levels. Such transition probabilities can be 
calculated if the characteristic functions associated with the characteristic 
values are known. Conversely, agreement between the observed transition 
probabilities and the calculated values of these quantities gives an indication 
of the accuracy of the calculated characteristic function. ~z~ 

Figure 2 gives the energy levels of Hf  18~ This nucleus has a rotational 
bandJ ~5) The angular momenta of the states shown are J = 0, 2, 4, 6, 8 in 
units of h/2~r, where h is Planck's constant. The energy levels of these states 
are proportional to J(J + 1), where J is the angular momentum quantum 
number. 

Figure 3 gives the energy levels Of U 239, the angular momentum quantum 
number of which is one-half. ~6) The diagram extends over 200 eV and its 
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CONSTANT ENERGY IN THOUSANDS 

X J ( J + I )  OF ELECTRON VOLTS 
J 

1 0 9 7  8 1 0 8 5 , 5  

6 4 0 , 5  6 - -  6 4 1 , 7  

5 0 5  4 - -  5 0 9 , 5  

91,5 2 - -  9 3 , 3  

o o 0 

Fig. 2. Energy levels of  Hf  18~ From Ref. 5. 

lowest point is about 4.88 MeV over the lowest energy level. It is of  little 
interest and is almost impossible to calculate the exact position of  these 
energy levels. The reason one knows their position with the accuracy shown 
in the diagram is that the addition of  a low-energy neutron to a U 238 nucleus 
gives the U 239 nucleus with an energy of  about 4.88 MeV. 

The last diagram gives an example of  energy levels in a region where one 
will be interested mostly in the statistical statements such as the density of  
the energy levels, their average width (i.e., the square of  the wave function at 
the nuclear boundary), etc. Furthermore, one is also interested in the proba- 
bility for certain spacings, including the question of  whether the levels are, 
on the whole, equidistant or distributed according to a certain probability 
law. In addition to the average width of  the levels, one is interested in the 
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distribution of the widths, i.e., the fraction of levels the widths of which are 
in unit interval at a certain width. 

From the point of  view of  mathematics, the statistical questions are 
far more interesting than the question of the exact properties of the low- 
lying energy levels. This is so since it is likely that the statistical properties of 
a large class of  real symmetric operators are in many respects identical. 
They should depend then on only a few parameters which are characteristic 
of  the problem. For  example, one may confine one's attention to the class 
of  real symmetric operators since the energy operators are not only Hermitian 
but are also real. This statement is a result of  the time inversion symmetry of 
most physical systems. 3 

2. P R E L I M I N A R I E S  

What  guidance has one in order to phrase the questions to be answered 
in the spectroscopy of highly excited complex systems ?4 To start with, one 
recalls the energy levels comprising the spectra of  a few well-known one- 
dimensional quantum mechanical problems: 

Harmonic  oscillator: E ,  ~ n + 1/2. 

Infinite square well: E~ ~ (n + 1) 2. 

Hydrogen atom : E ,  ,~  - 1 / ( n  + 1) 2, and continuum for E > 0. 

where n = 0, 1, 2 ..... For  each of the three potentials there is another constant 
of the motion, the parity, which acts as an additional quantum number. 
In the one-dimensional hydrogen atom case all energy levels, except the 
ground state, are doubly parity degenerate (i.e., the even solutions which are 
rejected by boundary condition requirements in the three-dimensional 
hydrogen s state are present in the one-dimensional case). Degeneracy is a 
statement concerning energy level spacings. Accordingly, in the case of  the 
one-dimensional hydrogen atom the spacing between corresponding levels 
of  even and odd parity is zero. 

If  one ignores the question of degeneracy associated with parity labeling 
and also ignores the existence of a continuum for positive energies for the 
one-dimensional hydrogen atom, one sees that the En form a countable 
sequence of numbers. Thus one might learn something about the positions 
of  energy levels of highly excited states by examining the mathematics of 
number sequences. 

a It appears that not all physical systems have time symmetry. This was first pointed out 
as a result of experiments which show a violation of C P  invariance in the decay/(2 ~ -+ 
7r + + 7r- in 1964 by Christenson e t  al .  ~17~ For a recent development see Beier e t  al .  ~18~ 

The following is based on Ref. 19. 
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What sequences of numbers does one know in mathematics ? Perhaps the 
best-known sequence of numbers which is not trivial is the sequence of prime 
numbers. It is well known that no simple formula for the nth prime number 
p ,  exists, although there are formulas involving limiting operations. 

The best-known result concerning the prime numbers is the so-called 
prime number theorem. (2~ It gives an answer to the question of how many 
primes N(n) there are between the integers 1 and n for a large integer n. The 
result, for large n, is 

N(n) = (dt/log t) (3) 

In Fig. 4 this function is plotted as a function of n2 The density of prime 
numbers dN(n)/dn, given by 

dN(n)/dn = 1/log n (4) 

is also given in this figure. 
It will be noted that statistical concepts are already involved in the dis- 

cussion of the prime numbers, such as the notion of the density of the primes. 

5 This figure appears in Ref. 19. It is based on Lehmer 's  (22) tables. 
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This is similar to the situation one finds in quantal spectra where, given a 
Hamiltonian, there is nothing random about the solution of the SchrSdinger 
equation. On the other hand, there is apparently enough complexity in the 
prime number sequence that the density is not without what might be 
considered as fluctuations about the mean density. 

What  then would one mean by a completely random sequence? For an 
experimentalist this is a rather simple question since it is the same problem 
as the determination of the singles, doubles, etc., counting rate for a decaying 
radiative source. The major property of a decaying source is not that the 
decay occurs at random, but that the events are ordered in time. 

It  is well known that the relevant decay law for the differential probability 
Pk(x), where x = t/-r is the time measured in units of  the mean life ~ of the 
source between two counts having k counts occur between them, is the 
Poisson distribution 

Pk(x) = (xk/k !) exp(-- x) (5) 

Hence one expects the nearest-neighbor spacing distribution for an ordered 
sequence of random numbers to be P~ = e x p ( - x )  and the next-nearest- 
neighbor spacing distribution to be Pl(x )  = x e x p ( - x ) ,  etc., where x = S / D  
is the spacing measured in units of  the mean distance D between random 
numbers. 

Let us now return from the mathematical digression to the problem of 
quantal spectra. Most of  quantum spectroscopy is based on the SchrSdinger 
equation given in the introduction, where the operator (Hamiltonian) H is 
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Fig. 5. Typical theoretical calculation of energy levels. From Ref. 19. 
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taken in the form 

A A 

H(1 ,2  ..... A) = "~, (T~ + V~) + ~ V~j (6) 
i = l  i < ] = 1  

for a system of A particles when one assumes that there is a two-body inter- 
action potential. The SchrSdinger equation is then solved for the eigenvalues 
E (which give the spacing S) and the wave functions ~ .  Once the wave func- 
tions are found one can then calculate expectation values of operators such 
as magnetic dipoles, electric quadrupoles, and so on. One can also calculate 
widths of energy levels. The situation is summarized in Fig. 5. 

The case for which the discrete levels under consideration are unstable 
to particle emission is somewhate more complicated in practice since there is 
often a background amplitude that cannot be neglected. This is so since the 
scheme presented in Fig. 5 is typically used where the potential scattering is 
negligible, namely, for low excited states. 

3. S Y M M E T R Y  P R O P E R T I E S  OF P H Y S I C A L  S Y S T E M S  

The symmetry properties of any physical system are an expression of the 
Hamiltonian of the system. (19'23) Thus, for example, if the Hamiltonian H is 
independent of time, then the energy of the system is conserved. Hence 
energy conservation is associated with invariance of the Hamiltonian under 
time translation. For an isolated system of particles with interactions de- 
pending only on the distances between the particles, or invariant combina- 
tions of spin and interparticle coordinate vectors, translations along the 
spatial axes of a chosen coordinate system then leave the Hamiltonian un- 
changed, thus leading to the law of conservation of total linear momentum 
of the system. The conservation of angular momentum can be related to 
rotations in an appropriate way. One can subtract from the total energy the 
kinetic energy associated with the total momentum. This leads to the notion 
of internal energy of the isolated system which is also conserved. The in- 
ternal energy of the complex system is of great interest for the statistical 
theory of energy levels since the latter deals with spectra arising from changes 
in the internal state of excitation of the system. Spatial inversion transforma- 
tion (improper transformation) leads, in an odd number of dimensions, to 
changing the sign of every coordinate qi and momentum p~ in the Hamiltonian. 
If the Hamiltonian remains unchanged by this transformation (in technical 
language this means if the parity transformation operator commutes with the 
Hamiltonian, as is the case for gravitational, electromagnetic, and strong 
interactions), then the parity of the system is also conserved. Although the 
inversion transformation operator does not commute with the translation 
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operators, there are simultaneous eigenstates of the translation operator and 
the parity operator so that the energy, total linear momentum, and parity 
become simultaneously constants of the motion. 

We will now come back to the reversal of the direction of time. A 
measurable physical quantity is invariant under a canonical transformation. 
For  example, the quantity ](tF, q~)]2, where the bracket describes a scalar 
product between the two-state functions tF and q~, is invariant under the 
canonical transformations ~F -+ AtF, q~ --+ Aq). This means ~2~-2v~ 

[(~F, O)] 2 = ](A~', AO)I 2 (7) 

To satisfy Eq. (7), the operator A should be unitary,  i.e., A A  ~ = 1. But A 
could be either l inear or antil inear, depending on whether it satisfies the 
equation 

o r  

A(aU~ + bob) = a(AtF)  + b(A~b) (8a) 

A(a~F + b * )  = ~(A"F) + 6 ( A ~ )  (8b) 

where ~ and b are the complex conjugates of a and b. The two possibilities 
(8a) and (8b) are uniquely compatible with the physical requirement (7). 

The symmetry operators corresponding to space-time translations and 
spatial' inversions are linear in the coordinate representation, whereas the 
time inversion operator is antilinear. The last result can also be inferred by 
considering the time-dependent SchrSdinger equation, 

H t F  = ih ~tF/Ot (9) 

If  one expands the solution tF in terms of eigenstates ~Fk, 

~ ( t )  = ~ C~[exp(- iE~t /h)]~k (10) 
k 

the result of replacing t by - t is equivalent to replacing e x p ( -  iEkt/h) by its 
complex conjugate, thus showing that the operation of time inversion is 
related to complex conjugation, an antilinear operation. This is also seen 
from the operator ih O/8t appearing on the right-hand side of the SchrSdinger 
equation (9), where complex conjugation means time reversal. Time reversal 
does not change the coordinate q but reverses the direction of the momentum 
p since the latter involves a time rate. Denoting the time-reversal operator by 
T, one then has T q T -  1 = q, but T p T -  ~ = - p .  Applying these relations to the 
commutation relation [q, p] = ih leads to T i T -  1 = _ i, which shows again the 
antilinear effect of T. 
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It  thus follows that T is antiunitary. However, if one defines a complex 
conjugation operator K such that K ~  -- ~ ,  then K 2 = 1 and the combina- 
tion T K  is unitary. T can then be written as T = Uk, where U is unitary. A 
simple calculation then shows that T 2 = + 1. 

I f  the particles of the system do not have spin, then the unitary operator U 
can be chosen in the coordinate representation to be the identity operator. 
I f  the particles have spins, however, the choice of U is determined by the 
total angular momentum J, which satisfies T J T  -~ = - J .  The operator K 
gives the needed behavior for the orbital part  of  angular momenta  in the 
coordinate representation. For  one particle with spin, one can represent T as 

T = [exp(�89 (11) 

where % is one of Pauli's spin matrices. For  a system having A particles, T 
can be presented as 

T = {exp[�89 + a 2 ~ +  "'" + aAy)]}K 

= [exp(i~rS~/2)lK (12) 

which has the property T 2 = 1 for even A and T 2 = - 1 for odd A. 
One thus has the set of  commuting operators shown in Table I. Can any 

conclusion be reached about the structure of  the Hamiltonian matrix from 
these general invariance properties? I f  the Hamiltonian has none of the 
symmetries mentioned above, then the Hamiltonian matrix must be complex 
Hermitian and hence is not real in general. The appropriate canonical 
transformation group is therefore the unitary group which preserves the 
Hermitian property of the Hamiltonian under a similarity transformation. 
Suppose now that the Hamiltonian is time-reversal invariant. Then one 
faces two situations according to whether the total angular momentum of  the 
system in units of  h is integral or half-integral, thus depending upon whether 

Table I 

Invariance Operator 

Space translation 
Time translation 
Space inversion 
Time inversion 
Space rotation 

Total linear momentum 
Total energy 
Parity 
Time reversal 
Total angular momentum 
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T -  = + 1 or T 2 = - 1 .  The T 2 = 1 case is easily handled and the Hamil- 
tonian can be made real by an appropriate  choice o f  basis. I f  T 2 = - 1, again 
the Hamil tonian matrix can be made real provided that  it is rotationally 
invariant. Accordingly,  the Hamil tonian matrix can be made real provided it 
is time-reversal invariant and either the system has integral spin or, if it has 
half-integral total angular momentum,  the Hamil tonian is invariant under 
rotations. Thus one deals with real symmetric matrices and canonical trans- 
formations that  correspond to a change f rom one basis in which the Hamil-  
tonian is symmetric and real to another basis in which it remains the same. 
The aggregate of  such transformations R provides a group of  transformations,  
the or thogonal  group, 

R R t =  1 (13) 

The situation for which the spin o f  the system is half-integral and the 
Hamil tonian is time-reversal invariant but the total angular momentum is 
not  conserved, such as that  o f  an a tom located in a multipole external crystal- 
line electric field, is related to the well-known Kramers  degeneracy, (28'29~ 
where T and TW are orthogonal .  Since both  W and TW satisfy the Schrbdinger 
equation (H  is time-reversal invariant) for the same energy, there is at least a 
doublet  degeneracy in this case. The Kramers  degeneracy appears in the 
structure of  the Hamil tonian matrix in an intrinsic way and may be seen as 
follows. (~,3~ Since T 2 = - 1 ,  one has U K U K  = - 1 ,  or  U U  = - 1 .  Since U 
is unitary, one sees that  it must  be skew-symmetric. Under  a unitary basis 
t ransformation V, T - +  V T V  -1, and hence U - +  V U V  t. Under  such a trans- 
format ion the skew-symmetric unitary matrix U can be brought  into a form 
Z~j = 3~,i+1 - 3~,y_1, i.e., a banded diagonal matrix with +1  in the sub- 
diagonal. - l in the superdiagonal.  (31~ Further  canonical  unitary t ransforma- 
tions S are possible if they commute  with the time-reversal operator  T = Z K .  

Hence one requires for S 

Z K S  - S Z K  = 0 (14a) 

S Z S  t = Z (14b) 

Equat ion (14b) defines what  is known as the symplect ic  t ransformation.  (a2'aa~ 
There is a quaternion structure associated with the symplectic group of  trans- 
formations.  To express this, one introduces a unit matrix I and three 2 x 2 
complex matrices x = - i ~ ,  where the three matrices ~ are the familiar Pauli 
spin matrices 

o1=[  oiJ ' ~ 
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Table II 

Time- 
reversal Canonical 

symmetry Rotational symmetry Hamiltonian group 

Good Good Real Orthogonal 
Good Not good, but spin integral Real Orthogonal 
Good Not good, but spin half- Quaternion rea l  Symplectic 

integral 
Not good Good, or not good Complex Unitary 

,11, 

The matrix Z can then be written as Z = r2L 6 A detailed analysis of the 
present case (see Appendix A) shows that the property of being "quaternion 
real" is characteristic of the Hamiltonian of a system with odd half-integral 
total angular momentum subject to a nonisotropic external field (like an 
external electric field) which does not destroy the time-reversal invariance of 
the Hamiltonian. 

One can thus summarize the situation by saying (3~ that there is a three- 
fold way of utilizing the orthogonal, the unitary, and the symplectic groups 
as the canonical transformation group that is compatible with invariance of 
the Hamiltonian resulting from isotropy and homogeneity of space-time 
(see Table I1). (1~ 

4. G A U S S I A N  A N D  O R T H O G O N A L  E N S E M B L E S  (5~ 

The Gaussian ensemble, denoted by Ea, was introduced by Wigner (aS-aS~ 
and is characterized by a Hamiltonian which is a real symmetric matrix H~j, 

6 Explicitly, the matrix Z = r2I is given by 
0 -1  

1 0 

0 

1 
Z =  

--1 

0 

0 --1 

1 0 

consisting of 2 x 2 blocks 

along the leading diagonal, all other elements of Z being zeros. 
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where i , j  = 1 ..... N ,  and N is a fixed integer. One thus has N ( N  + 1)/2 
matrix elements which are assumed to be independent Gaussian random 
variables with the joint distribution function 

�9 i < ]  

where A and a are constants. Thus one assumes that each system with N 
quantum states occurs in the ensemble Ea with a statistical weight given by 
(16). The reality of the Hamiltonian ensures that the system is time-reversal 
invariant. It  can be shown (39'~~ that Eq. (16) is a consequence of two assump- 
tions: (1) The components H u are statistically independent and (2) the func- 
tion D ( H u )  is invariant under the transformation H - +  R - 1 H R ,  where R is a 
real orthogonal  matrix. Although the assumption (2) is natural in order to 
give equal weight to all kinds of interactions, the definition of the Gaussian 
ensemble Ea is nevertheless somewhat arbitrary since assumption 1 is arti- 
ficial and without physical motivation. The unsatisfactory feature of the 
distribution function (16) is that one cannot define a uniform probability 
distribution on an infinite range, and hence a restriction on the magnitudes of  
H u has to be made since otherwise it is impossible to define an ensemble in 
terms of H~j in which all interactions are equally probable. 

The orthogonal  ensemble, (4~ denoted by El ,  is defined with a slight 
change from the Gaussian ensemble Ea. A system is represented in E1 not by 
its Hamiltonian H but by an N x N unitary matrix S whose eigenvalues are 
N complex numbers exp(i0y), where j = 1,..., N, distributed around the unit 
circle. The matrix S is a function of the Hamiltonian H so that the angles 0j 
are functions of the energy levels E~ of the system, and over a small range of 
angles, 07 is linear in Ej. The basic statistical hypothesis here is that the 
behavior of n consecutive levels of an actual system, where n is small com- 
pared with the total number of levels, is statistically equivalent to the be- 
havior in the ensemble E1 o fn  consecutive angles 0~ on the unit circle, where n 
is small compared with N. 

Both the Gaussian ensemble and the orthogonal ensemble are restricted 
to N x N matrices, and are mutilations of an actual nucleus with an infinite 
number of energy levels. The most one can ask of such an ensemble is that it 
correctly reproduce level distributions over an energy range small compared 
with the total energy of excitation. The connection between the matrix S and 
the Hamiltonian is vague. The energy level distributions predicted by the 
Gaussian ensemble and by the orthogonal ensemble are unrealistic. 

The first gives the So-called semicircle distribution ~37~ 

P ( E )  = (2~rNaZ)-~(4Na z - EZ) ~/2, E z < 4 N a  z 

P ( E )  = O, E 2 > 4 N a  2 (17) 
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Fig. 6. The histogram of the semicircle distribution obtained by diagonalizing 197 real 
symmetric 20 x 20 matrices. From Ref. 6. 

which does not resemble the level distribution of a nucleus. The distribution 
(17) is also very different from that of  the real roots of  an algebraic equation 
of order Ni Figure 6 is a histogram of P(E) obtained by diagonalizing 
20 x 20 matrices, selected at random from a certain ensemble. As can be 
seen, the distribution approaches a semiellipse. In fact a semicircle is actually 
a misnomer since the two axes do not even have the same dimensions. (6) 

As has been pointed out before, the distribution (17) shows no similarity 
to the observed distribution in spectra. The behavior at large positive E is 
not relevant since what is known, and what could be hoped to be reproduced 
by the ensemble, is the distribution in the neighborhood of the lowest energy 
level. The density in the neighborhood of the lowest state in nuclei, for 
example, is such that there are few levels per million electron volts. Around 
5 meV, on the other hand, there are several levels in an interval of 100 eV. 
There seems to be an exponential increase with energy. The density of the 
levels as a function of the energy is convex from below, whereas the semi- 
circle or semiellipse is concave. It  could be surmised that the convex distribu- 
tion applies only in the neighborhood of the lower range of the asymptotic 
formula in the region where the asymptotic formula does not hold. The den- 
sity in the range of the semicircle law is proportional to N 1/2, where N is the 
dimension of the random matrix. I f  it were proportional to a lower power of 
N outside the ellipse, this would not show in the asymptotic law but might 
explain the region in which the density of  levels increases fast. This region 
was discussed in more detail for the so-called Wishart ensemble, (41) an 
ensemble in which the matrix elements are independent of each other and 
each shows a Gaussian distribution. It  was found that the semicircle law is 
too accurate. On the average there are only about two levels outside its range. 
I t  is clear that the existence of a reasonably large region in which the second 
energy derivative of  the density of  levels is positive does not follow from the 
assumptions made so far. 
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The orthogonal ensemble gives in the large a uniform distribution around 
the unit circle. Although the orthogonal distribution, like the Gaussian 
distribution, is unphysical, it has the advantage of simplicity and absence of 
spurious end effects. 

The precise definition of the orthogonal ensemble E1 is as follows: A 
system is characterized by an N x N symmetric unitary matrix S. Since the 
space T1 of all matrices S is compact, it makes sense to require that the 
ensemble E~ contain all possible S with equal probability. 

To give a meaning to equal probability, one requires a measure tL in the 
space T1. Since the matrices S do not form a group, the definition of  t* is not 
easy, and is done as follows: One writes S as UtU, where U is a unitary matrix. 
An infinitesimal neighborhood of S in 7"1 is given by 

S + dS = Ut(1 + i dM)U  (18) 

where dM is a real, symmetric, infinitesimal matrix with elements dM~s , and 
dM~j, with i ~< j, vary independently through some small intervals of lengths 
d/~j. The measure of this neighborhood is then defined as 

~(as) = ~ d~,j (19) 

The ensemble E~ is then defined by demanding that the probability that a 
system of E~ belongs to the volume element dS is 

P(dS)  = (Va)- llx(dS) (20) 

where II1 is the total volume of the space Tz, 

V~ = f ~(dS) (21) 

It can be shown that ~(dS) is independent of the particular U that was chosen 
to represent S. It also follows that for fixed S the unitary matrix U is un- 
determined precisely to the extent of a transformation 

U--+ R U  (22) 

where R is an arbitrary real orthogonal matrix. In addition, one can show 
that the ensemble E1 is uniquely defined in the space T1 of symmetric unitary 
matrices by the property of  being invariant under every automorphism 
S--+ W t S W  of T1 into itself, where W is any unitary matrix. Thus one states 
in mathematical language the precise meaning of the vague statement "al l  
systems occur in Ez with equal probability." 

The automorphism S ~ W t S W  is not a mere change in the representa- 
tion of states. It is a physical alteration of the system S into a different 



Statistical Theory of Energy Levels and Random Matrices in Physics 275 

system. One may visualize S as representing an unknown system enclosed in a 
"black box," and S is the transformation matrix of the system from some 
initial state ~b~ to a final state ~b~. The transformation S -+ W t S W  then means 
that one subjects the initial state to some further interaction W, and the final 
state to the same interaction W t in a time-symmetric way. If  we are totally 
ignorant of the interactions occurring inside the black box, the additional 
interaction W cannot increase or decrease our ignorance, and if all systems 
S were equally probable at the beginning, the application of W must not 
change that. Invariance of the ensemble E1 under the transformation 
S -+ W t S W  is a mathematical idealization of the hypothetical state of total 
ignorance. 

It remains only to justify, on physical grounds, the choice of the basic 
space T1 of symmetric unitary matrices. Alternative choices are discussed in 
Appendix A. The choice of T1 has the same motivation as the choice of real 
symmetric matrices for the Gaussian ensemble E~. Symmetric unitary mat- 
rices are physically appropriate under two alternative conditions: (1) the 
systems are invariant under time inversion and space rotations, or (2) the 
systems are invariant under time inversion and contain an even number of 
half-integer spin particles. The symmetry of the S matrix for systems satis- 
fying condition (1) has been proven in a particularly simple case. (42~ In the 
neutron capture resonances case, for example, condition (1) always holds and 
the ensemble E1 is the one to use. 

5. U N I T A R Y  E N S E M B L E  

In Section 4 we discussed the Gaussian and orthogonal ensembles, and 
in Appendix A we discuss the symplectic ensembles. We now briefly discuss 
systems without time-reversal symmetry, a unitary ensemble. (~> 

The unitary ensemble, denoted by E2, is a simple one. From the physical 
point of view such a system is easily created, for example, by putting an 
ordinary atom or nucleus into an externally generated magnetic field, 
provided the splitting of the levels by the magnetic field is of the same order 
of magnitude as the average level spacing in the absence of the field. The 
magnetic interaction must in fact be so strong that it completely mixes up 
the level structure which would exist in the zero field. This situation does not 
occur in nuclear physics, but it could occur in atomic or molecular physics. 

The Hamiltonian of a system without invariance under time reversal is 
usually an arbitary Hermitian matrix which is not restricted to the symmetric 
or self-dual. The system is represented by an N x N unitary matrix S belong- 
ing to the space T2 of all unitary matrices. Since the space T2 is the unitary 
group U(N), it is a simple matter to define a uniform ensemble E2 in T2, and 
an invariant group measure in U(N) can easily be established. 



276 M. Carmeli 

The ensemble E2 is then defined as follows: A neighborhood of S in T2 
is given by 

S + dS = U(1 + i d H ) V  (23) 

where U and V are two unitary matrices such that S = UV, dH is an infini- 
tesimal Hermitian matrix with elements dH~i = dH~ + i dH~, and dH~. 
and dH~ vary independently through small intervals of lengths d/~j and d/zpj, 
respectively. The invariant group measure tz(dS) is defined by 

tz(dS) = l--[ d/z~. d/z~. (24) 
i,J 

independently of the choice of the two matrices U and V. The ensembles Ez 
give each neighborhood dS the statistical weight 

P(dS)  = (V2)- ~tz(dS) (25) 

where 112 is the volume of the space T2. The unitary ensemble E2 is uniquely 
defined in the space 7"2 of unitary matrices by the property of being invariant 
under every automorphism S - +  U S W  of T2 into itself, where U and W are 
two matrices of the space Tz. 

6. E I G E N V A L U E - E I G E N V E C T O R  D I S T R I B U T I O N S  OF THE 
G A U S S I A N  E N S E M B L E  

The detailed calculation of the measure and the matrix element distribu- 
tion for the Hamiltonian submatrix H corresponding to one set of symmetry 
labels (like spin J and parity P)  discussed in previous sections leads to (see 
Appendix B) 

dlz(HB) = 2 eN(N- I~/4 dHu, dg~,v 
k .~= l  J L / z < v = l  k = 0  

] c*(., 
~- lEa - Eul ~ dtz(HD) • ~dtL(U) (26) 

z Ldl~(S) 

for the measure, and to 

P(H,/3) = exp{-  [Tr (n  - EoI)2]/4a 2} 
(4~ra2)tN + ~N~N- 1)/2~/2 (27) 

f P(H;/3) d~(HB) = 1 

for the matrix element distribution, where/3 = 1 corresponds to the orthogo- 
nal,/3 = 2 to the unitary, and/3 = 4 to the symplectic cases. These formulas, 
however, are not directly useful to obtaining numerical results for comparing 
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with energy level spacings, widths, and expectation values. From these equa- 
tions, however, one can obtain the eigenvalue distributions P(E~ .... , EN; P) 
and the eigenvector distributions P(R), P(U), or P(S)  according to the 
symmetry of the problem. Since the distribution function P(H)  is invariant 
and the Jacobian [Appendix B, Eq. (B.12)] factors in the eigenvalues and the 
measures, it follows that the eigenvectors are statistically independent of the 
eigenvalues in the Gaussian ensembles. Hence there is no statistical correla- 
tion between the eigenvalue spacings and the widths or expectation values. 7 
One has for the eigenvalue distributions 

P(E;/?) ~_ exp -Ta-  5 ~--1 (Ex - E0) 2 ~ lea - E,  IB (28) 
h < # = l  

whereas the eigenvector distributions P(R), P(U), and P(S)  are constants 
proportional to the inverse of  the total integrals of the measures dlz(R), 
dry(U), and dtz(S), respectively. Hence the eigenvectors form a set of  random, 
mutually perpendicular vectors, and therefore one can obtain the single- 
eigenvalue distribution P(E;/?) corresponding to the level density in some 
sense, the spacing distributions PNk(X;/?), where x = S /D  and S is the 
spacing while D is the mean spacing between levels. A complete unified 
treatment for the spacing distributions and the single-eigenvalue distribution 
is not available. 

Example~ The Gaussian ensembles of  2 x 2 matrices. From Eq. (28) 
one obtains 

P ( & ,  &;/?) = G I &  - & l  ~ 
x exp{- [ (E l  - Eo) 2 + (E2 - Eo)2]/4a 2} (29) 

where C a is a normalization factor given by C B = l/(2a)2+e2e/2U[(1 + /?)/2] x 
F(1/2). The mean spacing is given by 

D = a2 a/2 P[l + (fl/2)] 
C[(1 +/?)/21 (30) 

and the nearest-neighbor spacing distributions are given by 

P2~ 1) = ~ x exp - ~  x 2 (orthogonal) 

(4) 32 x2 exp - -  x 2 (unitary) (31) P2~ 2) = ~ 

(64) 
P2~ 4) = - -  x* - G  3%ra exp x 2 (symplectic) 

Here x = S/D,  where S is the spacing and D is given by Eq. (30). 

7 Some data suggest a small correlation, however. See Ref. 43. 
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In general, the characteristic values of  a real symmetric matrix, or a 
complex Hermitian matrix, " r epe l "  each other. (4~) This means that if the 
matrix elements depend on a number of continuous parameters, then the 
dimension of the domain in the space of the parameters for which the matrix 
has a double root is, in general, lower by two than the dimension of the 
parameter space itself. 

To see this, we go back to the case of  2 x 2 matrices discussed above. (1~) 
Let the symmetric matrix be given by 

Then the roots (characteristic values) of this matrix are given by the solution 
of the quadratic equation 

E 2 -  (a + c ) E +  ( a c -  b 2) = 0 

Hence they are 

E = �89 + c) + �89 - c) 2 + 462] 1/2 (33) 

As can easily be seen, the two roots are equal if a = c and b = 0. Now the 
space of parameters of  the matrix (32) is three dimensional. In this space, 
whose coordinates are given by a, b, and c, the equations a = c and b = 0 
represent a straight line in the b = 0 plane, which has one dimension, of 
course. I t  follows from this property of  matrices that the probability for a 
spacing S (interval between adjacent roots) is proportional to S itself if S is 
very small compared with the average spacing D. 

The property of a " repuls ion"  of energy levels (characteristic values, or 
roots of  the matrix) can also be seen from Eqs. (31), which shows how the 
three ensembles are reflected in the nearest-neighbor spacing distribution. 
For small x = S / D  the exponential parts of Eq. (31) approach one and hence 
the distribution functions vary as x e for the three cases. This is in contrast to 
an ordered sequence of random numbers following the Poisson distributions 
P~ = e x p ( - x )  [see Eq. (5) in Section 2], which approaches a constant as 
x goes to zero. Hence, there is a repulsion of energy levels associated with an 
absence of small spacings (namely absence of degeneracy). (~a) 

The behavior of  Eqs. (31) for large spacings is also interesting in the two- 
dimensional case. The result, when x -+ oo, is given by 

[ r(1 +/3/2) ] 2 2 
In P2~ --> const - [-p-~- + ~-~75] ] x + /3  in x (34) 

In the case of  large dimension where N -+ oo, Eq. (34) has to be modified by 
the addition of a linear term. (4~) But Eqs. (31) do not differ numerically very 
much from the infinite-dimensional results. (4v) 
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It is interesting to note that the first of Eqs. (31) is identical with a 
conjecture made by Wigner in 1957 for the spacing distributionJ 4a~ The 
formula was supposed to apply to a series of levels having the same values of 
all identifiable quantum numbers, such as angular momentum and parity. 
It is very well supported by experimental data and by numerical tests with 
random matrices of high order. However, it is known to be false. The correct 
distribution function was obtained later by-Mehta and Gaudin, ~7,~9'5~ who 
computed it numerically. They found that Wigner's distribution function is 
not identical with the one they derived but is surprisingly close to it, the 
difference being less than 0.0162 over the whole range of x = S/D. Hence 
for practical purposes Wigner's formula is justified. Within experimental 
uncertainties, changing the dimension N in the Gaussian ensemble does not 
affect significantly the form of the predicted nearest-neighbor spacing dis- 
tribution. In fact almost every other approach to the nearest-neighbor 
spacing distribution yielded results indistinguishable experimentally from the 
first of Eqs. (31). 

The distribution of  the )~th eigenvalue is defined by (for the two-dimen- 
sional case) 

d 

x e x p [ - ( E l  2 + E22)/4a 2] 8(E - Ea) (35) 

Here A = 1, 2. In N dimensions there are N distributions PN(E; 3, a). The 
single-eigenvalue distribution is defined as 

N 

P~(E; 8) = N -~ 7~ PN(E;/~, A) 
a = l  

and can therefore be written in the two-dimensional case as 

f) f~ P~(E; 5) = c ~  dE~ dE2 [E~ - E~l B 
oo - o o  

x exp[- (E~ 2 + E22)/4a 2] 8(E~ - E) (36) 

The detailed calculation of this function for the three cases (orthogonal, 
unitary, and symplectic) gives 

P2(e; 1) = (2~r) -z/2 e x p ( - 2 c  2) + 2-at%[exp(-e2)] qS(e) 

Pz(e; 2) = ~r- 1/2 [exp(-  ~2)](1 + 2e 2) 

P2(e; 4) = (12)-~rr-~'2[exp(-e2)](3 + 12e 2 + 4e 4) (37) 

where e = E/2a, and q~(z) is an error function, 

�9 (z) = (2/X/;) e x p ( -  t 2) dt 
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The level density is then given by pN(E; /3) = NPN(E; /3); where PN(E; fl) is 
the single-eigenvalue distribution defined above, and one has pN-+ l ID  in 
the limit when N ~ ~ ,  where D is given by Eq. (30). However, one finds in 
the case of two dimensions at E = 0 that l/p2(0; fi) is equal to (2~r)~/2a, 
~r~/2a, and 47r~/2a for fi = 1, 2, and 4 respectively, whereas D is given by 
(27r)l/2a, 4(2/Tr)lI2a, and 16(2/~r)l/2a for the same cases. 

We now discuss in some detail the concepts of the mean level density 
and the nearest-neighbor spacing. <~9~ For  the Gaussian ensemble one can 
develop the asymptotic semicircle law of Wigner (see Section IV, and Refs. 
36, 38, and 41), 

( E~ ~ 
PN(E; /3) N~ 7ra(f iN)l '  2 l-4a~] (38) 

valid for E ~< 2a(pN) 1/2. Hence pN(E;/3) = NPN(E;/3) is given by p•(0; /3) 
-~N_~oo(1/Tra)(N//3) ~I2 for the case of  E = 0. In addition to the nearest- 
neighbor spacing distributions PN~ the higher-order spacing distribu- 
tions PN~(x;/3) (see above) are of interest for comparison with experimental 
results. The case for which N goes to infinity is again of great interest. This 
has been worked out by Dyson for the circular ensemble. <5~'52> A complete 
Monte Carlo calculation of quantities using the Gaussian orthogonal en- 
semble with a sample of 10,000 10 • 10 matrices was carried out by Porter, <~3) 
who obtained all spacing distributions up to k = 8 and showed that the rate 
of change of these distributions with dimension is small over the range of 
major probability. Dyson and Mehta <5~> have developed efficient statistics, 
one of which is sensitive to long-range order properties of a sequence of 
levels, where the concept of  selecting a set of  N levels in sequence out of 
sequence of N levels in the circular orthogonal ensemble was developed to 
meet the experimental results. 

Finally some remarks should be made on the unitary and symplectic 
ensemblesY 9~ In the case of  the circular unitary ensemble ~ a sequence of 
energy levels can be obtained from the circular orthogonal ensemble by 
superposing two energy level sequences having the same mean spacing3 TM 

A sequence of energy levels in the circular symplectic ensemble can also be 
generated from a: sequence of  levels in the circular orthogonal ensemble by 
selecting alternate levels. ~6~ It is conjectured that similar relationships hold 
in the Gaussian ensembles in the infinite-dimensional case, in which the 
orthogonal ensemble underlies the unitary and symplectic ensembles. Next- 
nearest-neighbor spacing distributions have been obtained for the Gaussian 
orthogonal and unitary ensembles in three dimensions, showing no appreci- 
able difference in the range of major probability from results in very large 
dimension, c5v'58~ Use of generalized ensembles based on the classical poly- 
nomials affects the eigenvalue distribution (hence the level density). For  ex- 
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ample, the nearest-neighbor spacing distribution obtained in the unitary 
ensemble based on the Legendre polynomials is identical to that of the 
circular unitary ensemble in the infine-dimensional case. (59,~~ In the unitary 
ensemble the spacing distributions are implied by a certain kernel functionJ 61~ 
The situation when only energy level positions are known but not the other 
associated symmetry quantum n.umbers (like spin and parity) was dis- 
cussed. (~~ The Brownian motion model for the eigenvalue distribution, 
and spacing distributions, were also discussed. (6~-67~ 

7. D I S T R I B U T I O N  OF T H E  W I D T H S  

We now discuss the fluctuation properties of the widths of energy levels, 
that is, of  the square of the wave function at the nuclear or atom surface, and 
the expectation values. Although a detailed theoretical argument is yet 
lacking, Scott, ~6~ and Porter and Thomas, (69) found, on the basis of experi- 
mental results by Hughes and Harvey, (7~ that the probability that the 
value of the wave function is between 7 and 7 + d7 is 

(2~r52)- 1,2 e x p ( -  y2/2,22 )dT' (39) 

Here y2 denotes the average value of 7 ,2. Equation (39) essentially shows that 
the matrix elements in complex spectra produce a Gaussian distribution, and 
represents a generally accepted rule, the so-called Porter-Thomas distribu- 
tion. It is also well confirmed experimentally. 

The calculation of the statistics of the matrix elements, in general, 
involves two self-adjoint operators, the Hamiltonian H defining the coor- 
dinate system, and another operator M representing the physical quantity 
such as the dipole moment, whose matrix elements one wishes to find2 Let 
us assume that the two operators H and M are both real. This means there is 
a coordinate system in which all permissible operators, representing the 
physical quantity one is interested in, have real matrix elements. If  one 
chooses the coordinates in such a way that the states represented by them are 
time-inversion invariant, then the matrix elements of the Hamiltonian become 
real. If  the physical quantity one is interested in is time-inversion invariant, 
then the matrix elements of its operator will also be real. 

Most interesting physical quantities do have the property of time- 
inversion invariance, i.e., retaining their signs when the directions of the 
velocities are reversed, or the opposite property of reversing their signs if 
the directions of velocities are reversed. The operators representing these 

The following is based on Ref. 7. 
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physical quantities, such as the magnetic moment,  that reverse their signs 
when the velocities are reversed are Hermitian and purely imaginary, hence 
skew-symmetric. 

The calculation of the distribution function of the matrix elements of  
time-reversal-invariant operators can be modified and applied to antiinvariant 
operators. Therefore the same distribution function is expected for the matrix 
elements of the antiinvariant operators as for real, time-inversion-invariant 
operators. 

It  is also assumed that the density of  the characteristic values of  the 
physical quantity is an even function of the characteristic value. This con- 
dition is fulfilled for the antiinvariant operators, but also all known time- 
inversion-invariant transition operators satisfy this condition. 

Let, then, use be made of a coordinate system whose axes are the 
characteristic functions of  the operator M (and not of the Hamiltonian H)  
and let the characteristic values be denoted by/ , .  The matrix element can then 
be given by m = ~ t*~x~y~, where x~ and y~ are the coordinates of the states 
between which the matrix element is taken. Furthermore, x~, y~, and m are 
real. The problem is then to calculate the distribution of m for the Hamilton- 
ians of the ensemble chosen. I f  one assumes that this is rotationally invariant 
in the Hilbert space, then one can calculate the distribution of the above 
expression for rn when the vectors x and y are each normalized to unitary 
but remain perpendicular to each other, Y. x~ 2 = ~ y2 = 1, Y xiy~ = O. 

This calculation can be carried out in detail, leading to the fact that the dis- 
tribution is Gaussian: 

(2~./72) - ,/2 exp( - m2/2~ ~) (40) 

Introducing the transition rate P = rn 2, one then obtains from Eq. (40) the 
distribution 

(2~r/~sp) - 1/s exp( - r / 2g  2) (41) 

Equation (41) is the familiar Por ter -Thomas distribution mentioned at the 
beginning of this section. It is confirmed experimentally in the case of neutron 
emission and various moments in atomic physics. (72~ 

For more on the expectation value problem, the reader is referred to 
Refs. 73 and 74. 

It  is worthwhile to comment on the assumptions that led to the distribu- 
tion formula (41). It  has been shown ~7~ that it is plausible that the replacement 
of Hilbert space by a space of high dimensionality is justified here more than 
in previous cases discussed. The assumption that the matrices considered 
were real is also important. An ensemble of complex Hermitian matrices 
would lead to a transition probability 17 (proportional to the absolute square 
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of the matrix element), (/x 2) = 1 e x p ( -  1-'/292), which is different from Eq. (41). 
As Wigner has pointed out, this is significant. There are experiments which 
show that the actual Hamiltonian is not strictly time-inversion invariant 
but has a small antiinvariant part. This part would manifest itself in the 
region where the levels are close to each other. Hence, an experimental check 
on the Porter-Thomas distribution would give an indication on the magni- 
tude of  the non-time-inversion-invariant part of the Hamiltonian. The effect 
here is similar to what would occur in the level-spacing distribution; the non- 
time-inversion-invariant part of the Hamittonian would manifest itself in 
this case in an added repulsion of the levels. 

8. C O N C L U D I N G  R E M A R K S  

We have seen how the statistical theory of energy levels is related to the 
theory of random matrices. The theory is applicable to a variety of subjects 
(see, e.g., Ref. 76): theoretical aspects of resonance reaction theories, statis- 
tics of resonance parameters such as level spacings, neutron fission radiative 
and reaction widths, level densities, fluctuations in cross sections, strength 
functions and their relation to the optical model, intermediate structure in 
particle- and photon-induced reactions, and statistical aspects of the decay 
of the compound nucleus. However, as Wigner (77) has pointed out recently, 
the subject is not precisely defined as compared to the theory of statistical 
mechanics. The latter subject is clearly defined since it deals with time- 
averaged properties which depend only on the energy and are independent 
of the other initial conditions, as the quasiergodic theorem asserts. On the 
other hand, in the theory of statistical properties of nuclei one considers 
situations in which one is not interested in as detailed a picture of the nucleus 
as one is generally interested in physics but tries to find properties and rules 
which are reasonably simple and general, shared by most nuclei under 
appropriate conditions. 

The role of the Hamiltonian in both statistical mechanics theory and in 
the statistical theory of energy levels is very important and worth a few 
remarks/~7~ It is well known that some of the very interesting laws of statis- 
tical mechanics can be derived from the simple assumption that the equations 
of motion can be derived from a Hamiltonian through the usual variational 
principle. For  example, the entropy theorem and the equipartition theorem 
belong in this category (see, e.g., Ref. 78). Also, much of other work in the 
theory of statistical mechanics is based on the explicit knowledge of the 
Hamiltonian itself (which is known in most practical cases). There are, how- 
ever, no known theorems which are as fundamental as the entropy theorem 
or the equipartition theorem. In fact, as is well known, one does not even 
know the nuclear Hamiltonian. Moreover, some relevant properties of the 
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Hamiltonian are complicated, even though its explicit form is not known. 
Of course, the Hamiltonian in the statistical theory of energy levels is an 
operator, and hence a matrix, defined in a certain Hilbert space. 

The most natural set of properties to be made use of  are those shared by 
self-adjoint matrices in Hilbert space. This then leads to the concept of 
ensembles of  self-adjoint, or real symmetric, matrices in Hilbert space, which 
is a definition of the measure for such matrices in Hilbert space. The concept 
o f "  vast majority of all self-adjoint matrices" or "practically all self-adjoint 
matr ices" is then mathematically defined. 

A particular case of  distribution, which is of much interest for both 
physicists and mathematicians, is that of the Wishart distribution. ~ I f  one 
demands that the measure be invariant with respect to unitary transforma- 
tions, the measure is then an arbitrary function of the invariants of  the matrix, 
multiplied by the differentials of  the independent components of  the matriX 
elements. If, further, one demands that the probabilities of  the independent 
components of  the matrix elements be independent of each other, one then 
obtains, essentially, the Wishart distribution, and the ensemble obtained is 
such that the number of  matrices within unit interval of  the independent 
components of  the matrix elements Mik is proportional to exp(~ ~ Mi~ - 
p ~ IMi~]2), where a and fi are arbitrary constants. However, (Tv~ practically 
none of the matrices of  this distribution have characteristics similar to those 
observed for actual Hamiltonians. In particular, the density of  the character- 
istic values of  most matrices as a function of energy (the semicircle law) has, 
in the neighborhood of the lower bound, a negative second derivative, (41~ 
whereas the measured density has a positive second derivative with respect to 
the energy. Hence one should be careful to draw other consequences that are 
obtained from the Wishart model. 

To overcome this difficulty, one m i g h t  use the independent particle 
model. ~v9-82~ The result obtained by these recent studies is that the density of 
the levels as a function of the energy is a Gaussian, rather than the semicircle 
of the Wishart and related ensembles, and at its lowest range its second 
derivative is positive. Another result (8~ is that the distance of the second 
and further neighbors is subject to much larger fluctuations than in the Wish- 
art ensemble case. However, the independent particle model has its own 
restricted validity577~ 

Another model that might replace the Wishart ensemble is that in which 
the matrix elements are viewed as particles in Brownian motion. <66~ It  then 
follows that the characteristic values can also be viewed as Brownian particles. 

A third model is based on an ensemble of matrices of the form H = 

There seems to be a difference on the use of terminology '~ Wishart distribution" between 
physicists and statisticians. See comment by Krishnaiah, in Ref. 76, p. 20. 
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mtm + m~rn, where m is again an arbi t rary  complex matrix.  This model  
seems to promise  the impor tan t  factor  o f  mathemat ica l  simplicity. (77),1~ 

A four th  model ,  which is based on the in format ion  theory t rea tment  of  
the r a n d o m  Hamil tonians ,  is given by Balian. (Sa) 

Before we end this section we ment ion once again that  one respect in 
which all the matr ix  models  differ f rom physics is that  they all deal with 
finite matrices,  whereas physics deals with infinite matrices. Thus  one must  
always, in interpret ing the results o f  the matr ix  model ,  be careful not  to use 
those results which specifically have to deal with the finiteness of  the matrix.  

Finally, to conclude our  discussion, we point  out that  our review does 
not  include the t remendous  volume of  work  done on the mathemat ica l  
aspects of  the theory of  r a n d o m  matrices,  and the reader is referred to the 
literature.(a~-a~) 

A P P E N D I X  A.  S Y M P L E C T I C  G R O U P  A N D  Q U A T E R N I O N S  (4~ 

A set of  matrices B form an N-dimensional  symplectic group,  denoted by 
Sp(N),  if B is a 2N x 2N uni tary  matrix and satisfies the relation [see Eq. 
(14b)] (as) 

Z = BZB t (A.1) 

(The matr ix  Z was defined in the text and is given in footnote  6.) I t  is well 
known (32~ that  the algebra of  the symplectic group can be expressed mos t  
natural ly in terms of  quaternions.  We here give a brief  discussion of  quater-  
nions. 

In t roducing  the s tandard quaternion nota t ion  for  2 • 2 matrices 

r l=[O_i  ; i ] .  ~ z = [ 0 1  ; 1 ] .  ~ s = [ ; i  0] (1 .2)  

satisfying the mult ipl icat ion table 

(r~) 2 = (72) 2 = ('ra) z = - 1  (A.3) 

{~-', ~-J} = e~J%-~ (A.4) 

where {r 1, ~_k} denotes an an t i commuta to r  z% -~ + ~_1%~ and d jk is the skew- 
symmetr ic  tensor such that  e 12a = 1. All 2N • N matrices will be considered 
as cut into N 2 blocks of  2 • 2, and each 2 • 2 b lock is regarded as a 
quaternion.  Hence  a 2N x 2N matr ix  with complex elements becomes an 

ao Professor Wigner has kindly informed me (private communication) that his proposal 
to use m*m + mtm, with m a complex Wishartian ensemble member, has proved to be 
invalid; there is a finite gap in the distribution of the roots at zero and it is at least 
unlikely that there is an energy region with a positive second derivative of the level 
density following this gap. 
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N • N matrix with complex quaternion elements. For example, the matrix 
Z (see footnote 6) can now be written as 

Z = T2I (A.5) 

where I is the N x N unit matrix. It is interesting to note that the matrix 
rules for multiplication are not changed by this transcription. 

A quaternion g is called real if it has the form 

q = qO + (q.x) (A.6) 

and the coeff• qO, ql, q2, and q3 are real numbers. Hence a real quaternion 
is not a real 2 x 2 matrix. The conjugate quaternion q* to the complex 
quaternion q is defined by 

q .  = qO_  (q.x) (A.7) 

Note that the conjugate quaternion q* is different from the complex conjugate 
quaternion q defined by 

q = qo + (q.x) (A.8) 

A quaternion q satisfying ~ = q is real. A quaternion q with q* = q is a 
scalar. The Hermitian conjugate quaternion q* is defined by applying both 
types of conjugation together, 

q, = q ,  = ~o _ (~.x) (A.9) 

Consider now a general 2N x 2Nmatrix A which one writes as an N x N 
matrix Q with quaternion elements q~j, with i , j  = 1, 2,..., N. The standard 
matrix operations on A then reflect themselves on Q as follows: 

Transposition 

Hermitian conjugation 

Time reversal 

(Q*),j = - r2q * ~r z (A. 10) 

(Q*),~ = qj*~ (A.11) 

(QR), s = q~ (A.12) 

The usefulness of the quaternion algebra is a result of the simplicity of Eqs. 
(A.11) and (A.12). Using Eqs. (A.11) and (A.12), one sees that the condition 

QR = Q, (n.  13) 

is necessary and sufficient for the elements of  Q to be real quaternions. When 
Eq. (A. 13) is satisfied one calls Q quaternion real 
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A unitary matrix B satisfying Eq. (A. 1) is automatically quaternion real, 
and satisfies the conditions 

B • = B t = B -1 (A.14) 

which can be considered as defining the symplectic group. Matrices S repre- 
senting physical systems are not quaternion real. They are unitary and self- 
dual, i.e., 

S ~ = S, S* = S -1 (A.15) 

The theorem of quaternion algebra states: 

Theorem 1. Let H be any Hermitian, quaternion-real, N x N matrix. 
Then there exists a symplectic matrix B such that 

H = B - 1 D B  (A.16) 

where D is diagonal, real, and scalar. The statement that D is scalar means 
that it consists of N blocks of the form 

Hence the eigenvalues of H consist of N equal pairs. 
The Hamiltonian of any system that is invariant under time reversal and 

has odd spin satisfies the condition of the theorem stated above. The energy 
levels of such a system, as was pointed out in the text, must be doubly 
degenerate. This is the Kramers degeneracy ~28'29~ and the above theorem shows 
how it appears naturally in the quarternion language. 

An extension of the above theorem states that if 5'1 and $2 are two 
commuting, Hermitian, quaternion-real matrices, then there exists a sym- 
plectic matrix B such that 

S~ = B - ~ D 1 B ,  $2 = B - 1 D 2 B  (A.18) 

where D1 and D2 are diagonal, real, and scalar. From this extension one can 
prove: 

Theorem 2. Let S be any unitary, self-dual, N x N quaternion matrix. 
Then there exists a symplectic matrix B such that 

S = B - 1 E B  (A.19) 

where E is diagonal and scalar. The diagonal elements of E are N complex 
numbers exp(i0~) on the unit circle, each being repeated twice. 

To prove the theorem, one writes 

S = S~ + $2 (A.20) 



288 M. Carmeli 

where $1 and Sa are quaternion real. Since the operation of time reversal 
applied to a matrix does not involve complex conjugation, when S is self- 
dual each of $1 and $2 must be separately self-dual. Hence S~ and $2 are also 
Hermitian. Moreover, since S is unitary, 

S i S  = ( S t  - iS2)(SI  + iS2) = 1 (1.21) 

Separating the quaternion-real and -imaginary parts of Eq. (A.21), one finds 

S12 + $22 = 1, S , $ 2  - $ 2 S ,  = 0 (A.22) 

Hence S~ and $2 commute~ and therefore the extension of Theorem 1 applies. 
If B is chosen to satisfy Eq. (A. 18), then Eq. (A. 19) will hold with 

E = D1 + i D z  (A.23) 

being diagonal and scalar. Let d~ and dk' be the corresponding eigenvalues of 
D~ and D2. Equation (A.22) then gives 

(dk) 2 + (dk') 2 = 1 (A.24) 

This shows that dk and d~' can be taken as 

d~ = cos 0~, dk' = sin 0~ (A.25) 

and therefore the diagonal elements of E become 

e~ = d~ + ida' = exp(i0k) (A.26) 

each occurring twice. 
The analog of Theorem 2 for the even-spin case is: 

Theorem 3. Let S be any unitary, symmetric, N x N matrix. Then there 
exists a real orthogonal matrix R such that 

S = R - ~ E R  (A.27) 

where E is diagonal. The diagonal elements of E are N complex numbers 
exp(i0k) on the unit circle. 

The proof of this theorem is the same as that for Theorem 2 if one 
replaces self-dual for symmetric, quaternion-real for real, and symplectic for 
orthogonal. 

Return now to the odd-spin case and define the s y m p l e c t i c  ensemble  E4, 

the odd-spin analog of the orthogonal ensemble Ez (see text). One then works 
in the space 7"4 of unitary self-dual quaternion matrices. We now define an 
invar iant  m e a s u r e  in T4 in spite of the fact that the matrices ofT4 do not form 
a group. First one notices that every matrix S in 7"4 can be written in the form 

S = Uz~U (A.28) 
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where U is unitary. Given S, the unitary matrix U has a freedom of 

U-+ BU (A.29) 

where B is an arbitrary symplectic matrix. An infinitesimal neighborhood of 
S in T~ is given by 

S + dS = UR[1 + i d M ] U  (A.30) 

where dM is a quaternion-real, self-dual, infinitesimal matrix with elements 

dM~j = dM ~ + (dM, j..~) (A.31) 

where the real coefficients dM~y satisfy 

dM~ = dM ~ dMgy = - d M ~ ,  ~ = 1, 2, 3 (A.32) 

One has N (2N  - 1) independent real variables dM~, which vary through some 
small intervals of length dt~g.. The neighborhood of S so defined therefore has 
the measure 

Ix(dS) --- 1-I  dth5 (A.33) 

The symplectic ensemble E~ is therefore defined like Ea (see text), with the 
statistical weight of the neighborhood dS in E4 given by 

P (dS) = (V4)- lt~(dS) (A.34) 

where V4 is the total volume of the space T4. 
Finally one has: 

Theorem 4. The symplectic ensemble E~ is uniquely defined, in the space 
T4 of self-dual, unitary quaternion matrices, by the property of being in- 
variant under every automorphism S-:+ W R S W  of T~ into itself, where W 
is a unitary matrix. 

This theorem shows that the symplectic ensemble uniquely represents 
the notion of uniform a priori probability in the space T4. 

A P P E N D I X  B. G A U S S I A N  E N S E M B L E  <19~ 

In Section 4 we discussed the Gaussian and orthogonal ensembles. We 
here give some more details. The Gaussian ensembles <aS-~~ have the 
unifying feature that eigenvector and eigenvalue distributions are produced 
directly from a single set of hypotheses concerning the Hamiltonian of the 
system which usually reflects the actual dynamics. This means that data on 
level widths, expectation values, and level spacings can be used to test the 
same ensemble. 

Let us examine the orthogonal case in which the Hamiltonian can be 
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made a real symmetric matrix. As a model, one considers a real symmetric 
matrix of dimension N to represent the infinite submatrix of the Hamiltonian 
H associated with some symmetry property. Hence the Hamiltonian will 
include N ( N  + 1)/2 real parameters. To associate a measure (volume) with 
the matrix H, one introduces a metric in the parameter space defined by 

ds 2 = Tr(dH dH*) (B.1) 

where dH represents a matrix whose elements are infinitesimal increments of 
the elements of the matrix H. Comparing (B. 1) with the standard form of line 
element 

ds 2 : ~ ,  guy dx" dx ~ (B.2) 

one finds that the metric g,v is diagonal with N of the elements equal to one 

and the reamining N ( N  - 1)/2 elements equal to ~r A measure Call then 
be defined as 

dl~(H) = 2 N(N-1)/~ dril l  dH~2."dHuu dHI2"'dHu_I,N (B.3) 

in analogy to the volume element in a Riemannian space 

dV = (det g)~/2 dxz dx2...dxM (B.4) 

where M is the dimension of the space, M -- N ( N  + 1)/2. The quantities 
drill,..., dH~v_l,N are the elements of  the matrix dH. 

With the matrix H one can associate a distribution function 

P ( H )  = P ( H n ,  H22,..., HNN, Hz2,..., HN-~,N) (B.5) 

such that the differential probability dP that H~I is in d H n  at H ~ ,  etc., is 

de  = P ( H )  dry(H) (B.6) 

Since the matrix H is Hermitian, and Hermitian matrices do not form a 
group, one encounters a difficulty in defining a measure in terms of H. 
However, H is related to a diagonal matrix HD containing the eigenvalues of  
H by the orthogonal transformation R, 

H = RHDR -1 = RHDR ~ (B.7) 

The last equation is actually the SchrSdinger equation written in matrix form, 
where R contains the eigenvectors usually written as r and HD contains the 
eigenvalues. One can thus associate the volume element (B.3) with R and H~, 
where, as is well known, the matrices R do provide a group. Using (B.7), one 
can then write 

dH = R drip R t + [dR R ~, H] (B.8) 

Hence the N ( N  + 1)/2 variables of H are transformed into the N eigenvalues 
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in HD and N ( N -  1)/2 angles of  rotation in the matrix R. One can then 
insert for d H  of Eq. (B.1) its value given in (B.8) in terms of  the eigenvalues 
in HD and the angles of  R. The measure dtx(HD) associated with Hv is given by 

dlz(HD) = dE1 dE2.. .dL) (B.9) 

In  order to find the measure of  R, one writes ~ Eq. (B.7) in terms of matrix 
elements, 

N 

H ~  = ~ E~R~,~,R~= (B.I0) 
CC=[  

Equation (B. 10) defines a transformation from the eigenvalue and eigenvector 
variables to the Hamiltonian matrix element variables. Hence one can write 
the measure (B.3) as 

d/x(H) = 2 N(N- 1)/4 dHll""dHNN 

= 2N(N - 1)/4:j dEI'. 'dEN dal"'daNm - 1)/2 (B. 11) 

where al,..., C*N(N_Z)/2 are the N ( N -  1)/2 parameters of  the orthogonal 
matrix R. In Eq. (B.11) the term J stands for the Jacobian of the transforma- 
tion (B.10) and is given by the determinant 

J =  

DHNN/aE~ ... OHNN/&~N<N- ~)/2 

(B.12) 

I t  can be shown that J is a polynomial of  degree N ( N  - 1)/2 in the eigen- 
values. Since the eigenvectors are not unique, if one pair of  eigenvalues are 
equal it follows that the transformation inverse to (B.10) is singular and 
therefore J vanishes. Hence J is proportional to 

~-[  lEa - E.] (B.13) 
A<tt=l 

Thus J can be written as 

J = h (~ l  . . . . .  ~ N , ~ - - ~ )  I - I  l e a  - z . I  

measure of  the n-dimensional orthogonal Since the 
written as 

we see that 

d ~ ( R )  = h (~ l  . . . . .  c,~<N _ l>/2""d~<N - !>/2 

(B. 14) 

group can be 

(B.15) 

N 

d~(H) = d~(HD)d~,(R) 1-I  lea - E.[ (B.16) 
a < / Z =  J_ 

11 This approach is somewhat different from that of Hua.(O9) For measure of the group 
R in three dimensions see Naimark.<90) 



292 M. Carmeli 

How should the function P(H) ,  appearing in Eq. (B.6), be specified? 
One knows that it depends only on the eigenvalues and not on the eigen- 
vectors. One requires that P(H) be independent in the matrix elements. 
Moreover, if one does not know the Hamiltonian H, then one also does not 
know in what representation H will be diagonal and therefore one does not 
know R, thus choosing it at random. Hence it follows that P(H) should be 
independent of R, namely, P(H) is an invariant function of H. It follows 
that the requirements of invariance and independence are necessary and 
sufficient conditions to determine the form of P(H), where, mathematically, 
invariance means 

dP/da = 0 (B.17) 

and independence means 

P (H) = f l l  (HI a)'"fNN(nuu)'"f~_ 1,N(H~v - 1, N) (B. 18) 

A detailed calculation, using Eqs. (B.17) and (B.18), shows that 

f~, = exp [ - (Hu ,  - Eo)2/4a 2] 
( 4~a2)1/2 (B.19) 

f,v = exp(-  HL/2a2) 
(21ra~)1/2 t* < v 

with the normalization condition 

~ f.v(H.~) dH.v = 1 (B.20) 
oo 

In these equations a and Eo are constants. Finally, the expression for the 
function P(H) becomes 

P(H) exp{-  [Tr(H - EoI)2]/4a 2} 
= (4rraZ)N(N + 1)/~ (B.21) 

normalized such that 

f P(H) d~(H) = 1 (B.22) 

This is the situation for the orthogonal ensemble. 

The corresponding formulas in the unitary ensemble are 

N 

d~(H) = dt,(HD) dt,(U) I ~  (Ea - 17.,)2 (B.23) 
A<~=I 

where Ho and U are related to H by 

H = UHDU + (,B.24) 
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and 

P(H) = e x p { - [ T r ( H -  EoI)2]/4a 2} 

In  the symplectic case one obtains 

dlz(H) = d~(Ho) d~(S) I ~  (E~ - E.) ~ 
h < / t  

where HD and S are related to H by 

H = SHDS t 

and S is symplectic (see Appendix A), and 

and 

(B.25) 

(B.26) 

(B.27) 

P(H) = e x p { - [ T r ( H  - EoI)2]/4a 2} 
(4zra2)(2N 2 - N)/2 (B 28)  

These results of  the Gaussian ensembles can be summarized by writing 

dl~(Ha) = 2 aN(N-I)/4 dH~. ~-I dHe.~ 
~ = 1  ~ i /c=O 

rd (R) 
~- [ <~= IE, - Eu]a I d~(HD) • ,',dl~(U) (B.29) 

' L+(s )  

P(H;/3) = e x p { -  [Tr(H - EoI)2]/4a 2} 
(4~ra2)tN + ~U(N - 1)/21/2 (B. 30) 

f P(H; fl) +(Ha) = 1 

Here fi -- 1 corresponds to the or thogonal ,  B = 2 to the unitary, and/3 = 4 
to the symplectic ensemble. 
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